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Cracks in polymer glasses can grow slowly preceded by a craze, a narrow zone of plastic cavitation. The 
craze widens by drawing more polymer from its surfaces into its fibrils but the fibrils themselves fail by 
local creep. When the crack tip moves at velocity v the loading at the crack tip can be described by a local 
stress intensity factor K which is the sum of the 'apparent' stress intensity factor K A and a plastic 
contribution Kp (usually negative). Kp is found to be -KP(K)/v where P(K) is an integral over the craze 
boundary displacement law. Fibril failure by local creep leads to a power law, vocK". From these relations 
K and v ca n be determined as a fu nction of K A. The plot of K vs, K A is mu Itiple-valued with a stable branch 
(at high K) and an unstable branch (at low K) separated by a minimum value of K A which represents a 
threshold for stable, steady state crack growth. There is also a v threshold, below which cracks will not 
grow steadily. These predictions, the form of the v-K A curve and implications for slip-stick crack growth 
are compared with recent experiments. 
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I N T R O D U C T I O N  

The slow propagation of cracks in polymer glasses has 
long been of interest, not just because of its technological 
importance, but because the crack in such polymers is 
preceded by a relatively simple zone of plastic defor- 
mation, a craze. The craze is a narrow zone of fibrillation 
that forms almost a linear extension of the crack 1'2. The 
craze tapers from its maximum width at the crack tip to 
typically I0 nm wide at its tip, which advances by a finger- 
like growth produced by the Taylor meniscus insta- 
bility 3'4. A continuous void network is thus created, with 
small fibrils (typically ca. 10 nm diameter) being created at 
the polymer webs between the void fingers. The craze 
widens by drawing more polymer from the craze-bulk 
polymer interfaces into the fibrils, a process termed 
surface drawing 5-7. At nearly constant craze surface 
stress, the drawing process proceeds at an essentially 
constant extension ratio 2, which is determined by the 
entanglement density of the polymer, low entanglement 
densities producing high extension ratios and  vice 
versa 8-11. 

Crack propagation in polymer glasses under conditions 
where a single craze exists at the crack tip has been 
extensively investigated, both experimentally and 
theoretically. The usual approach is to assume the 
Dugdale model is applicable, such that the craze may be 
modelled as a zone that supports a constant tensile stress 
S c along its length. The model allows one to predict craze 
opening displacement profiles (w(x) as well as craze 
lengths for various conditions of loading (i.e. various 

stress intensity factors KA *) for crazes and cracks which 
are stationary. These predictions may be compared with 
experimental measurements of these quantities using 
microscopic optical interference techniques and reason- 
able agreement is usually obtained ~ 2-~ 6. 

For  crazes growing ahead of static cracks a similar 
model is used but S c and the effective Youngs modulus of 
the polymer E* are allowed to be time dependent 17.18 
When the crack is moving, however, a subsidiary assump- 
tion is needed. The Dugdale model does not provide a 
criterion for crack advance. It is usual to assume a critical 
crack opening displacement or COD, a maximum dis- 
placement w c of the two craze interfaces at the tip of the 
crack. Since it is easily shown from the Dugdale model 
that the fracture toughness, G~c = 2Scw c, this assumption is 
attractive in that it leads to a Gl~ that is almost inde- 
pendent of crack speed v (depending only on So(v)). Early 
measurements of w~ also seemed to confirm that it was 
essentially constant over a fairly wide range of tempera- 
ture and V 12'15'16, 

More recently, however, careful measurements by 
Doell, Koenczoel and Schinker reveal that by loading 
cr,/cks in PMMA to Ka's just below a threshold value, ca. 
0 .66MPam ~/2, crazes may be grown from non- 
propagating cracks which have wc up to 3 times larger 
than the COD for crazes in front of propagating cra- 

t In this paper we shall use the notation K k for the 'apparent' stress 
intensity factor, i.e. that conventionally defined by assuming material 
elastic behaviour. The symbol K with no subscript will be used here for 
the local actual stress intensity factor as described below. 
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Figure I (a) Schematic of crazes growing from crack tips in a 
polymer glass. (b) Craze surface displacement derivative profile 
computed from the Dugdale model 

c k s  20'21. It is difficult to understand how a true critical 
opening displacement if it really exists, can be exceeded. It 
is also hard to understand how a true critical craze 
opening displacement can exist for crazes which widen by 
surface drawing. For high molecular weight polymers 
there should be no natural upper limit for width of a craze 
produced at a crack tip by surface drawing (drawing at 
constant 2 should not cause the craze to become weaker 
with increasing width). Any apparent constancy of we 
must be due to other factors. 

On purely theoretical grounds, moreover, strong objec- 
tions can be raised to using the Dugdale model to 
represent cracks moving at constant velocity. Consider 
the double-ended crack and craze shown in Figure la. Let 
x be a coordinate along the crack craze axis, let ao be the 
crack length and let a be the length of the crack plus craze. 
From the Dudgale model the displacement derivative 
dw/dx is given by 22 

dw S~ sin2(fl~ - fl) 
dx - --2~E*lnsin2(flc + fl) 

(1) 

where cosfl=x/a, cosfl¢=ao/a and E* is an effective 
Young's modulus (E* = E  for plane stress and E/(1- v 2) 
for plane strain where v is Poisson's ratio). As can be seen 
from equation (1) and Figure lb, dw/dx is logarithmically 
singular at the crack tip. This fact causes no special 
problems while the crack is stationary. When the crack 
moves at constant velocity v, however, the displacement 
rate if(x) at the craze surfaces is given by 

d w  
~,(x) = - v - ; -  (2) 

l a x  

Thus the displacement rate at the crack tip in the Dugdale 
model becomes infinite at the crack tip. Since if(x), which 
is proportional to a fibril drawing rate, must be coupled to 
the local tensile stress across the craze, the strong 

dependence of ~ on position along the craze makes the 
Dugdale assumption of a constant S, untenable for a 
moving crack.* 

There is an additional problem with the Dugdale model 
that should be considered. Because the Dugdale model 
describes only plastic deformation the stress at the crack 
tip is non-singular and no stress intensity factor is defined 
at the crack tip. Of course there cannot be a stress 
singularity physically, and so the lack of a singularity is 
not a flaw of the model. However, there is no parameter in 
the theory that plays the role of stress intensity factor. It 
will be recalled that the detailed Barenblatt model as for 
the cracking" process does provide an expression for a 
stress intensity factor K even when the stress is non- 
singular, and a crack propagation force G=K2/E is 
defined. Such a force G is necessary if the cracking is to 
represent discontinuous separation of material and the 
production of new crack surface. 

An important characteristic of the Barenblatt model is 
that it shows that the stress state at the crack tip can be 
treated as though it had the singularity of linear elasticity 
and that the resultant K will be substantially the same as 
for the model with no singularity. 

In the present paper a theory for crack propagation in 
polymer glasses is presented that is free of the defects of the 
Dugdale model. It is based on an earlier theory of 
Hart 23'36 for Mode III crack propagation in metals. In 
that theory a clear distinction is made between the 
material deformation process and the cracking process. In 
the present treatment the deformation process is the 
highly localized craze growth process which can be 
modelled as a nearly one-dimensional zone of defor- 
mation ahead of the crack. The cracking process is the 
process of local creep instability and rupture of the craze 
fibrils in a zone ~ close to the crack tip within the already 
drawn craze. This time dependent cracking process 
ieplaces the static crack propagation criteria of standard 
fracture mechanics and allows the definition of a crack 
propagation force in the sense of the Barenblatt model. 
Because of the one-dimensional geometry of craze and 
crack, the Mode III treatment of Hart is easily transfor- 
med to a Mode I configuration. 

OUTLINE OF THE THEORY 

Consider the semi-infinite crack moving slowly at velocity 
v shown in Figure 2a. Let x be a coordinate along the 
extension of the crack with its zero at the moving crack 
tip. In the absence of inelastic deformation ahead of the 
crack we may compute the stress a A ahead of the crack 
from the applied stress intensity factor KA, i.e., 

, A ( x ) = K #  2 , / ~  (3) 

These stresses, however, will be relaxed by plastic defor- 
mation in the zone ahead of the crack, in this case a craze. 
It is useful to view the final stress state as a superposition 
of the stresses of the purely elastic body, equation (3) and 

* It might be imagined that simply increasing the stresses along the craze 
toward the crack tip would eliminate the singularity in dw/dx. It will 
not. It can be shown that the singularity will remain as long as there is a 
finite drop in stress at the crack tip 22. 
Sit is this zone in our model that corresponds to the Barenblatt cohesive 
fracture zone, not the entire craze. 
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(a) Schematic of craze at the tip of a semi-infinite crack 
moving at a steady velocity v. (b) Magnified view of the craze at 
the crack tip. Last Ioadbearing fibril is one fibril spacing D O ahead 
of the crack tip 

the so-called self stresses a P of the plastic zone. These 
stresses are those that would exist if the displacements of 
the boundary of the zone were fixed and the applied load 
was removed from the sample. 

These self stresses for a craze are most conveniently 
expressed in terms of a linear dislocation density ~(x), 
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then the singular part of a v is of the form, 

a P n , = K J ~  (6) 

The total tensile stress normal to the craze surfaces is just 
a = a A + a P so that 

. . .  ~/a---. E*V/~ f dx,a(xl)  
a =  ~ / x /  z n x  + - - - 7 - - -  I ~ -  

4~ J # x x ( x - x ~ )  
CR 

(7) 

where 

K = KA + Kv (8) 

Thus the total stress has a singularity that may be 
characterized by a local stress intensity factor K which is 
simply the sum of an applied stress intensity factor KA and 
a plastic stress intensity factor K v, due to the displace- 
ments produced by the craze. Since Kp is usually negative 
(for monotonic loading, at least), one can imagine Kp as 
screening KA to produce a smaller local K at the crack tip. 
One can now begin to see the problems inherent in using 
the Dugdale model which assumes Kp always cancels KA. 

For a moving crack Kp, and thus K, are functions of v, 
since craze growth like all plastic deformation, is time 
dependent. On the other hand, in view of our previous 
discussion on the crack extension force G, which is now 
given by G = K2/E  *, the (local) value of K should control 
the crack velocity. To proceed further on this problem we 
must first solve two subproblems: (1) find the dependence 
of Kp on crack velocity 

Kp-=Kp(v) (9) 

dw 
~(x)= -2~x-  x 

and (2) determine a reasonable form for the dependence of 
crack velocity on the local K, 

It has to be emphasized that the actual structure of the 
craze is not a dislocation array. Rather the elastic stresses 
outside and on the boundary of the craze are the same 
whether the surface displacement profile w(x)  is produced 
by a dislocation array or by an array of some other 
structural element. Representing the craze as a distri- 
bution of dislocation allows the full power of dislocation 
theory 24 to be used in the solution of this problem. 

The self stress due to the accumulated dislocations ~(a) 
at the crack tip has been found previously 22'23 to be 

E* 1 _IdXla(Xx) ~--~-nE*x/X f dxaa(xx) 
o P ( x )  ~-- 

an x /7  d ~ - i  J x/~l(x--xl)  
CR CR (4) 

where xl is a coordinate along the craze and 
~CR is an integral over the whole craze length. The first term 
on the right hand side of equation (4) has an inverse 
square root singularity at the crack tip (x ~ 0) whereas the 
second term is non-singular as long as ~(x) is continuous 
over the craze and goes to zero at the craze tip. 

If we define a plastic stress intensity factor 

E*  fdxx~(x l )  

v = v(K) (10) 

THE PLASTIC STRESS INTENSITY FACTOR OF 
A MOVING CRACK 

We now compute the value of Kp 

E* fdxl~(xt )  Kp- (11) 

for a moving crack. In general the integral will depend on 
past history, all the previous rates of widening at all points 
along the craze for example. If we seek only steady 
solutions, those for which the crack v=constant,  the 
history dependence disappears and the problem is greatly 
simplified. Steady state means that 

~, + v~=O 02) 

where & is the time rate of change of ~ at a fixed point in the 
fixed coordinate frame Xo = x + vt. Consider the following 
integral I 
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I ~  1 Idx ,  V/~l ~(x,) 
v j  

CR 

Substituting k(x~)from equation (12) to give 

(13) 

CR CR 

(14) 

and integrating the right hand side of equation (14) by 
parts, we find 

CR tip 

CR o CR 

Since e(x,) is at most logarithmically singular at x~ =0  
(see equation (1)) and must vanish at the craze tip (CR tip), 
the first term on the right hand side of equation (15) is 
identically zero and by substitution into equation (5), 

E* t f Kv= x / ~ V  
CR 

(16) 

K v now depends only on current deformation rates (&'s) 
and on the steady crack velocity. 

To go further we must propose a kinetic law for craze 
widening. Current experimental evidence strongly in- 
dicates that crazes widen and the fibrils lengthen, by a 
surface drawing process, analogous to widening of a neck 
in a textile fibre. For a fibre drawing at constant extension 
ratio 2, the displacement rate of its shoulders is just 

ff=(2-1)~/2 (17) 

where ~ is the widening rate of the neck. We believe an 
analogous equation holds for the displacement rate of the 
craze boundaries. Logically the displacement rate must 
increase with the tensile stress acting on the craze 
boundary in much the same way as the drawing rate of a 
textile fibre increases with tensile stress 2 s-27. An approp- 
riate equation for the stress dependence of ff is a power 
law 

= % (~r/a,)" (18) 

where fly is displacement rate at a reference flow (drawing) 
stress try.~" We may now compute ~(x) from equation (18), 
and & = - 2  d~/dx, to be 

2n J r  . 1 
& = -  (a/at) - da/dx (19) 

O'y 

t O n e  might argue that a stress activated rate equation of the form 
~ocexp(V*0"/2kl~T ) would be more appropriate. Since experimental 
values of V*/2kBT are usually large, it is difficult to distinguish this form 
from a power law with large n; the latter has the advantage of 
mathematical simplicity. One must also expect the power law to break 
down at low and high 0". At low 0", below a finite stress ao, ~---~0 since the 
free energy of the deformed glass is higher than that of the undeformed 
glass 27. At high 0", ~, ultimately must not exceed the speed of sound in the 
material. Under the practical fibril drawing conditions involved in 
crazing ahead of a constant velocity crack neither of these conditions is 
important. 

From equation (16) we calculate the plastic stress intensity 
factor. 

2E*n f' ,__ 
Kp= ~ |dx,x/x,(a/%)"-t(da/dx,) (20) 

x/2na,vcJ " 

Given the strong dependence of ff on a (n is usually quite 
large), it seems reasonable to approximate tr by the 
singular term in equation (7), i.e., 

a(x, ) = K/ 2x/2-~l (21) 

This approximation, which is the major one in the theory, 
is justified in detail in the discussion. 

Equation (21) can now be transformed from an integral 
over distance ahead of the crack tip to an integral over the 
normalized stress q = tr/ar to yield 

t/L 

E*nff'rK I d~/t/"-2 (22) 
Kv= way J 

0 

where ~L is the upper limit to normalized stress to be 
discussed in the next section.* The result of integration is 

Kp= K E* ~/,y n 
v rr try n - 1  (r/0"-I (23) 

THE LIMITING STRESS 

Inspection of equation (22) reveals the need for a limiting 
stress. If the upper limit of the integral is extended to 
q=tr/ay=~, the integral diverges for all physically 
reasonable values of n. Fortunately there are good 
physical reasons why ~/L cannot be infinite. An upper 
bound for qL can be derived from the stress at which 
from equation (18) equals c, the speed of sound in the 
material. At stresses above this value ff must be constant 
at about c, and &=0. While this bound is perfectly 
reasonable mathematically, it is much larger than values 
of r/L that can be inferred from experiment. Some other 
mechanisms must limit qL to much smaller values than the 
r/L derived from the sound speed criterion. 

One possible mechanism is suggested by eXamining 
Figure 2b, which shows a highly magnified schematic 
drawing of the craze at the crack tip. The fibril im- 
mediately at the crack tip is undergoing the rapid terminal 
stages of local creep failure as discussed in more detail in 
the next section. The next fibril to the right, at x = Do, the 
fibril spacing, is the last craze fibril to be able to bear the 
full stress implied by the local value of the stress intensity 
factor K, i.e., 

a(Do)=K/ 2x/~-~o (24) 

Since there are no intact fibrils closer to the crack tip than 
Do, the displacement rate ff due to fibril drawing in this 
region r0 < x < Do] must be effectively zero. Hence 

* E q u a t i o n  (22) would  appea r  to  diverge at  the lower  l imit  q = 0 for n < 1. 
Since ~, shou ld  vanish  at  a finite 6 = 0 o  27 and  since n is usual ly  much  
grea te r  than  one  anyway,  this  appa ren t  d ivergence  does  not  raise 
prac t ica l  difficulties. 
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o r  

rlL = a(Do)/ay (25) 

rlL=K/Kr (26) 

where Ky = %,x/2nDo. 
Using this limit Kp from equation (23) becomes 

- E ' X / - -  (27) 
Kp= /2Do fir 

n v n - 1  

THE CRACK VELOCITY 

We must now find a relationship between the local K and 
the crack velocity. Several possibilities exist. In his 
original paper on creep crack growth Hart 2s proposed a 
semi-brittle crack growth law of the form 

, / G -  Go\ 
v=v s i n h ~ T l  ) (28) 

where Go is a minimum crack extension force for crack 
growth (from Griffith 28 Go = 2y, twice the surface energy), 
G 1 = kaT/A* and v* = vo exp(-  AG*/kBT) where A* and 
AG~ are an activation area and free energy for crack tip 
bond rupture, respectively. Here k B is Boltzmann's con- 
stant and v 0 is a crack velocity based on an attempt 
frequencyfof  bond rupture (i.e., Vo =f/ao, where a o is the 
spacing between atoms). While this semi-brittle law is 
appropriate for certain metals (steel, for example), it may 
not apply to the rupture of craze fibrils since there is 
considerable evidence that these fail during crack growth 
by a ductile, local creep mechanism ~ ,10,29. Nevertheless it 
should be understood that equation (28) and particularly 
G o, sets a lower limit for G below which the crack velocity 
must approach zero, and Kp must tend to infinity. 

A model for the crack growth by local creep failure of 
fibrils is suggested by the recent paper of Trassaert and 
Schirrer 29. They define a failure time t I for the craze fibrils 
as being the craze length divided by the crack velocity and 
show that this failure time is a function of the average 
stress over the craze as determined from the Dugdale 
model. We adopt a similar approach here, only we take 
into account the effect of the variation of local true st ress 6. 
along the craze, t 

One would expect that the failure time must satisfy the 
following equation 

v = -  f dx 
ts(d) 

CR 

(30) 

It is common for the creep failure time at constant stress to 
obey the following law 

tf(dl) =g(d2) (31) 
tI(d2) ~(6~) 

i.e., the failure time is inversely proportional to the creep 
strain rate k. This law expresses the assumption that the 
damage processes in creep (e.g., chain disentanglement in 
local regions) scale with the creep strain rate. It seems 
reasonable, and is mathematically convenient, to repre- 
sent the dependence of~ on the true stress in the fibrils by a 
power law, which gives 

=1(6.c~" (32) ts(6.) ~c\6. / 

where (~)- 1 is the fibril failure time at a reference stress 6~. 
The finely divided nature of the craze dictates a lower 

limit for the applicability of equation (32) due to the 
surface tension 7 of the fibrils a°. A fibril of diameter 6 can 
only elongate by creep if 6. > 6.,. where 

6,.=27/6 (33) 

and strictly speaking equation (32) should be modified by 
subtracting off 6.m from both 6.c and 6.. However, since 
crazes only grow in width if 

dD= 8F,~.l/2/fl >)> dmD 

where fl is a constant of order unity, and where F is a 
surface energy which takes into account chain scission at 
fibril surfaces (F > ;~)l o, the existence of a lower limit for 
equation (32) is not of practical importance and will be 
ignored. Nevertheless we note that 6." provides formal 
counterpart to HaWs Go, a local stress and stress intensity 
factor Km= dm 2 x / / ~ o  below which fibrils will not fail and 
cracks will not propagate. 

The final step is to transform the integral in equation 
(30) from an integral over space to an integral over craze 
stress a. Since the true fibril stress 6.=2a and 
d x =  -1/n(K2/aa)da,  equation (30) becomes 

f dty~d) = 1 
CR 

(29) 
aL 

U /~ j 0.3 ~xO.c ] 
0 

(34) 

which simply expresses the idea that creep damage is 
cumulative. Since at steady state d r = - d x / v ,  equation 
(29) may be rewritten as 

t While it may seem contradictory to assume the craze displacements are 
due to fibril drawing but that creep dominates fibril failure, the creep we 
envision is highly localized to a 'weak' entanglement transfer length 1° 
along the length of the fibril. While the local creep strain in such a short 
length (~40  rim) may be large, its overall contribution to the craze 
displacement prior to fracture is negligible. 

where ac = 6.J2. Finally we recognize that a divergence in 
velocity occurs if we integrate to a = oo for practical values 
of m (m >~2), a divergence that is similar to the one in Kp 
noted above. We solve this problem in the same way, by 
using the same upper limit stress a(Do) defined in equation 
(25). With this limit the velocity becomes 

CK z DWo)] m-: 
v -  (35) 

(m - 2)n a 7 
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o r  

¢ 
where Kc = ~ - ~  and vc = 2g~Do/(m - 2). 

(36) 

T H E  LOCAL K V E R S U S  KA RELATION 

We may now write an equation relating the applied stress 
intensity factor KA to the local stress intensity factor K 
using equations (8), (27) and (36). The result is 

where 

K A = K + B / K  tin-n) (37) 

B 
- ~:c ( n -  1) (o,)" 

o r  

1.5 

~, 1.C 

I[ : 
~ , 

0,5' 

1.5 

a 

t 
Kr 

/"  r 
K=KA 

7 ~ : ~ O v t i v ~ - - -  ! Unstoble steady stote 

I I [ 
0.5 1.0 1.5 

HA ( M Po - m I/2 ) 

b 

B = K z f f r  n Kc m 

V c n- -  1 Kr  n 

where KE = E * ~ .  
We note once more that the quantity KA is the usual 

experimental parameter, usually designated simply as K, 
that describes the apparent stress intensity factor under 
the assumption of linear elasticity. The quantity de- 
signated here as K is the local stress intensity factor at the 
crack tip and is the source of the crack propagation force. 

DISCUSSION 

For this theory to make physical sense m must be greater 
than n.* Under these conditions a plot of K versus KA 
yields a C-shaped curve opening to larger KA as shown in 
Figure 3. To interpret this curve it is useful to remember 
that steady state crack growth (constant v) corresponds to 

=0. To the right of this curve lies the region/~ > 0 and to 
the left of this curve the region / ( <  0 as illustrated in 
Figure 3a. We may consider the curve itself to have two 
branches, meeting at the 'nose', point t. 

Consider points sl, s2 on a line of constant KA near the 
upper branch of the curve as shown in Figure 3b. Point s 1 
is below the upper branch, in the region where/£ > 0, or K 
is increasing with time. As K increases the system tends 
towards the point s on the upper branch. Point s2 is above 
the upper branch, in the region where/~ < 0, and K thus 
decreases with time. In this case the system (at constant 
KA) also tends to point s on the upper branch. The upper 
branch thus represents a curve of stable, steady state crack 
growth. Points that are displaced from the branch have a 
tendency to return to the branch. Topologically, this 
branch of the curve is a valley. 

Now consider points ul, u 2 on the same line of constant 
KA near the lower branch of the curve. Point u~ is below 

* If the stress dependence of fibril drawing is greater than that of fibril 
failure, the craze will simply widen indefinitely without fibril failure or 
stable steady state crack growth; K becomes a smaller and smaller 
fraction of K a as K A increases. 

1.0 
E L 
o Q. 

0.5 ft'-- 

Unstoble steody stote 

I I 
0.5 1.0 1.5 

K A (MPo -m 1/2) 

Figure 3 (a) Local stress intensity factor K versus applied stress 
intensity factor K A for a crack moving at a steady velocity. The 

1/2 4 values shown correspond to B=0.012 (MPa-m ) and m - n = 3  

the lower branch in the region R < 0 where K decreases 
with time. Thus as time progresses the crack starting from 
this point will move away from the lower branch, K will 
approach the minimum value Km for crack growth and 
the crack will stop. At point uz, it is quite another story. 
This point is in the region/(  > 0 and K increases with time. 
The crack at point u2 thus increases its K and v, and moves 
up away from the lower branch at constant KA. Although 
the points on the lower branch of the K vs. KA curve are 
steady state values, they represent an unstable steady 
state. Topologically this branch represents a ridge. 

It is now clear that the point t at the nose where both 
branches meet is a very special point. It represents the 
minimum conditions Of KA and K (or v) for stable, steady 
state crack growth. There are two very important con- 
sequences that follow from the existence of this point: 
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(1) There must exist a threshold applied KA-----KA T, a 
threshold local K = K  T, and a threshold crack velocity 
vT= v,(KT/K~) m, below which (stable) steady state crack 
propagation is not possible. The most significant of these, 
predictions is that of a non-zero threshold velocity. If we 
try to propagate a crack at v < v T, it will not grow in a 
stable manner. 

(2) At the nose of the curve, the slope d K / d K  A is infinite. 
This means at the threshold that dv /dK  A is infinite. 
However, at very large KA, the second term on the right 
hand side of equation (37) is negligible compared to the 
first, K--*KA and v--~vc(K~/Kc) m. A plot of log v vs. log g A 
must have an infinite slope at the threshold which then 
decreases smoothly to a slope approaching m for KA >> 
KA T, as shown in Figure 4. 

Before proceeding further it is reasonable to check 
whether these predictions are obeyed even qualitatively 
by polymer glasses. Unfortunately most modem fracture 
testing utilizes displacement controlled tests. (For exa- 
mple a screw driven machine is often used to load a 
precracked specimen at a constant displacement rate and 
the crack growth and load is monitored.) Even with 
specimens where K k is constant with crack length (double 
torsion samples for example) it is difficult to know 
whether any crack growth (particularly at low v) is truly 
steady state or not. It is important to emphasize that the 
theory only gives results for steady state crack growth. 
Cracks loaded to K A below the threshold K f f  still grow 
initially but eventually they will stop. The only experi- 
ments which are foolproof in this regard are those on 
constant K A vs. crack length specimens where constant 
load is applied and where the crack velocity is monitored 

over a large increment of crack growth to be sure that it is 
constant. 

Such experiments have been carried out by Aleshin, 
Aero, Lebedeva and Kuvshinskii a ~ on various samples of 
poly(methylmethacrylate) (PMMA) and (crosslinked) co- 
polymers of methylmethacrylate with ethylene glycol 
dimethacrylate. Some of their results are shown in Figure 
5. Note the existence of a threshold K f f  and a threshold 
velocity v T below which the crack will not propagate. Note 
also that the v versus KA curves approach the threshold 
with a nearly vertical slope.* 

Using the experimental values of KA T and v T, equation 
(37) may be rewritten to obtain 

KA(V) p [Iv'~llrn 1 fvT'~ pi" 
(38) 

where p = m - n. The exponent m may be determined from 
the slope of the log v versus log KA line at v >> v x where only 
the first term of equation (38) contributes appreciably and 
p = m -  n may be found from the extrapolation KA E of this 
line to V=VT since K~KXA=p/(1 +p). The solid lines in 
Figure 5 represent the theory (equation (38)) with the 
parameters determined in this way. That the fit is excellent 
is perhaps not surprising in view of the number of 
parameters used for the fit but nevertheless these all have 
reasonable values, e.g., m> n>  1. 

The threshold parameters KA x and v T may be expressed 
in terms of the other material parameters as follows: 

1 + e (  ne 1, K ; , ° . , , , .+ , ,  

(39) 

_ f n P g E ~ y ' ~  m/" +p~ VT--Vct ( ~  I~c ) KcmP/(I+P)K;(m-P)/(P+ I' (40) 

A decrease in K~ produced by decreasing either ay or D O 
should lead to increases in both KA T and v T. On the other 
hand, a decrease in K c produced by decreasing ac or Do 
should lead to a decrease in KA T but an increase in v T. 
These changes are what one would expect intuititively. 
Experimentally 31, decreases in KA T are produced by 
decreasing molecular weight and by adding a comonomer 
crosslinking agent, ethylene glycol dimethacrylateaL An 
increase in KA r is produced by adding small amounts of 
plasticizer 31. It does not seem worthwhile at this time, 
however, to attempt to extract K~ and K r for these various 
samples since the exponents m and p are also observed to 
change somewhat with molecular weight, crosslinking 
and plasticizer content. 

We may now also assess the accuracy of the initial 
assumption that the non-singular term of equation (7) is 
negligible. This point is important since we have actually 
assumed subsequently a limiting stress at the crack tip, 

a ( D o ) = K / ~  

To estimate how serious the error introduced is, let us 
assume the non-singular stress is a constant value (or) 

* In fact the empirical expression proposed by Aleshin et al., namely 
2 1 2  * 2  1 2  KA(V)=(K ~ +(K ) [ lnv /v  ] ,  to represent for their results has 

just such a vertical tangent at the threshold. 
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over the craze which is of finite length Aa. If the non- 
singular term may be ignored the following inequality 
must hold, 

<0.> 
0-(Do) ~ 1 

We can compute <a> from the Dugdale model since it 
would be the plastic zone stress in this model at an applied 
KA ° equal to the actual Kp. Under these conditions 

Thus the ratio (a>/a(D o) becomes 

On the stable steady state curve Kp has its maximum 
value 

KT=KT/(m--n) 

at the threshold. In addition since Do-0.1 pm and 
Aa -~ 100/~m, 

<a> < rc/2OO(m- n) 
a(Oo) 

For all reasonable values ofm and n the right hand side of 
this inequality is much less than one. The assumption that 
the non-singular part of the stress may be ignored is thus 
quite good. 

The non-steady state behaviour to be expected from 
this model, while it cannot be computed exactly, has 
interesting qualitative features that are apparent from 
Figure 3. The plastic stress intensity factor K~ is repre- 
sented on this diagram as the difference between actual K, 
KA point describing the state of the crack at a time t and 
the line K=KA. Imagine the following step loading 
thought experiment. The crack at t = 0  is loaded (in- 
finitely rapidly) to KA = K~ which is below KA T and then 
held at K~ for a certain (short) time ts. As illustrated in 
Figure 6a, during this time a craze plastic zone grows, Kp 
increases, K decreases and the crack slows since we expect 
the relation v=vc(K/Kc) m to still hold approximately 
under these non-steady state conditions. After t~ has 
elapsed, the crack is loaded, again infinitely rapidly, to 
KA on the stable branch of the K vs. KA curve. The crack 
now should grow at its steady state velocity v(K°A). 

Now suppose we hold the crack for a much longer time 
t t at K~. Kp continues to increase, and K and v continue to 
decrease. After time h the crack is loaded, infinitely rapidly 
again along a line Kp=constant, to KA P as shown in 
Figure 6a. But now the state of the crack (K, KA) is below 
the unstable branch of the K vs. KA steady state crack 
growth curve. If held at KA P, K and v will continue to 
decrease, and Kp to increase until the crack stops. To 
achieve steady state crack propagation in this latter case 
KA must transiently increase to at least beyond KA ~, the 
point where the loading Kp=constant line intersects the 
unstable branch of the steady state growth curve. Once 
inside the region K > 0, K increases and Kp decreases and 
ultimately KA can be reduced to KA P with ensuing steady 
state crack growth. Such step loading experiments give 
one the possibility of determining the existence of the 
unsteady state branch and its approximate shape. 

The normal fracture experiments, however, are dis- 
placement controlled, not load controlled. Even though 
so-called constant KA specimens are used (e.g. the double 
torsion specimen) for which 

Ka = ~eF (4l) 

where F is the applied force and 5¢ is a compliance 
calibration constant which is independent of crack length, 
the specimens are normally loaded with a constant 
displacement rate/k Under these conditions the rate of 
change of KA is given by 

g~ (s +s~) ~ -  
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where S and S,, are compliances of the specimen and the 
machine respectively and W is the thickness of the 
specimen along the crack front. For steady state to be 
attained /<A must equal zero which implies that under 
these conditions, 

v = 6E*/(2KAW~) (43) 

As shown above, however, there is a threshold crack 
velocity v x, below which the crack will not propagate in a 

i 

g_ 
E 

1.0 

0 . 5  

0 

C 

e 

t 

I I J 
0 I 5 1'0 1"5 
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stable steady manner. There exists, therefore, a threshold 
displacement rate ~T below which stable crack growth is 
no longer possible even with constant KA specimens. 

What will occur in such a test? The K vs. KA diagram in 
Figure 6b supplies the answer. Suppose we load the 
specimen from KA = 0 at a 6 > ~X. Under these conditions 
the system will travel up a line such as line oa on the 
Figure. While for simplicity we have represented the 
loading path as a straight line, the actual path probably 
has a strong downward curvature since we expect Kp to 
increase more rapidly with time at higher KA'S. In any case 
the terminal point a lies on the stable branch of the steady 
state K vs. KA line and once that point is reached, the 
crack propagates in a stable manner resulting in the KA vs. 
6 (or t) curve shown in the insert. The displacement rate 
can be reduced until 6 = ~T and steady crack growth will 
occur. The change in the steady K A level with 6 will be 
negligible since the K vs. KA and v vs. KA curves have 
vertical tangents at the threshold. 

Now suppose we load at 6 below ~T. The loading path is 
now that shown in Figure 6¢. The crack grows slowly in 
the regime/( < 0 until the unstable branch of the K vs. K A 
curve is crossed at b. Since the crack is now in the regime 
R > 0, it accelerates rapidly and joins the stable branch of 
the K vs.  K A curve at approximately c. However, in this 
state 2VKA~/E*~ ~ so from equation (42) /<A is negative. 
As KA decreases with time the system follows K vs. K A 
curve back toward the threshold point. When the 
threshold velocity is reached, however, 2vTKAW~/E * is 
still greater than 5, KA must decrease still more and the 
system departs from the stable branch, K falling rapidly 
until the original loading line is regoined at d. The cycle 
now repeats itself giving the unstable KA vs. 6 curve shown 
in the insert to Figure 6c. The maximum value of K A 

corresponds roughly to KA at the point b where the 
unstable branch of the K vs.  K A curve is crossed. The 
minimum value of KA corresponds roughly to K~and thus 
roughly to the K A at which the crack propagated 
smoothly at 6's just above ~T. As 6 is decreased still further 
the maximum values of K A during unstable crack 
propagation should increase but the minimum value 
should remain unchanged. 
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Figure 7 (a) K A histories typical of continuous crack growth and 
unstable stick-slip crack growth. Unstable crack growth is 
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stress. (b) Ratio of maximum K A to minimum K A in unstable crack 
growth in an epoxy as a function of displacement rate (from ref. 
34). The minimum KA=KA L is almost independent of 5 and is about 
the same as that for continuous crack growth at higher 5's 

Returning.to the step loading experiment, now carried 
out a rapid 6 after a long ageing time we should expect 
to see a transient maximum in K A vs. 6 curve as shown in 
the insert of Figure 7a. This maximum value of KA should 
increase with holding time but eventually saturate since 
the crack cannot relax below the point K = 0, KA = KA °. 

All the phenomena predicted above are observed in 
crack growth experiments on epoxies 32-a4.. As shown 
schematically in Figure 7a a transition in crack growth 
behaviour occurs in these materials as 6 is decreased. At 
high 6's KA increases steadily until the crack begins to 
grow at constant KA = K L. As t~ is decreased a transition 
to a so-called slip-stick mode of crack growth occurs .  K A 
increases to a value KA U with little of no crack growth, 
whereupon the crack begins to grow rapidly and KA drops 
until the crack arrests when KA ~-KA L. KA now increases 
again with little or no crack growth until K A = K A  U and 
the cycle of'slip-stick' growth repeats. A plot of KA L and 
K~ vs. 3 in Figure 7b shows the transition. This 
behaviour is clearly that expected from the theory. The 
critical value of 6 = 6¢ is just that corresponding to the 
threshold v r, i.e. 3~ = t~ x. For t~ < ~x stable crack growth is 
not possible. The lower or crack arrest, value of KA, KLA is 
approximately equal to the threshold value, K~. The 

* While reported observations of crazing in epoxies are equivocal at best, 
replacing the crazing zone with a zone of shear plasticity and the 
cracking by local fibril creep with the semibrittle crack growth law of 
Hart 23 does not change the qualitative argument given here. 

upper, or crack instability value, K~, is approximately the 
KA value at which the loading line crosses the unstable 
branch of the steady state K vs. KA curve. Furthermore it 
is observed experimentally 32- 34 that any increase in the 
yield stress of the epoxy, which might be identified with ay 
in the crazing model, produces a rapid increase in t~ r. Since 
v r depends inversely on a~ (equation (45)), the increase in 
~r is predicted by the theory. 

Likewise in step loading experiments the behaviour o f  
epoxy is in accord with the theory. As shown schemati- 
cally in Figure 6a, reloading the cracked specimen after 
holding short times at KA °, still results in KA increasing 
smoothly until the crack propagates at KA P. Holding for 
longer times at KA ° results in a KA VS. time curve on 
reloading which increases transiently to KA ~, before the 
crack propagates and KA decreases to KA p. The holding 
time necessary for KA ~ to exceed KA P corresponds to the 
time necessary for - K .  to increase to - K (  at the 
threshold(-  Kp x = KA x -  KX) assuming rapid ~loading 
along a line K~=constant.  Longer ageing times result in 
the loading line crossing the unstable branch ofthe steady 
state K vs. K A curve at  KAi> K A P ~  KA T. However, since 
-Kp(t) < KA °, KA i should reach a limit at long holding 
times. (On rapid loading under these circumstances 
K = KA--KA°-) Such behaviour is seen in Figure 8. 

Finally it should be noted that the present theory as did 
that of Hart 23 predicts fatigue crack growth at KA's that 
do not exceed KA r. Consider the fatigue cycle shown in 
Figure 9 in which KA is increased to KA ° SO rapidly that no 
crack growth occurs, held for time t o , then loaded rapidly 
in reverse to - KA °, held again for to, and so on as a square 
wave. During the rapid loading K~ = 0 and K = KA. For t 
just greater than zero, K and v are finite, then - K p  
increases and K and v fall; if t o is long enough, v will 
eventually fall to zero. Now KA is reversed to - KA ° along 
the line ab. Again during the rapid reversal / (p=0  so 
K=-(Kp(t=to)+KA°). During the holding period bc, 
the compressive local K is relieved by a reverse plastic 
deformation of the plastic zone or craze (Kp decays almost 
to zero in mode 19". In mode I crack growth does not occur 
during this portion of the cycle. Upon rapid reloading to 
+ KA ° at d, K will increase to just slightly below KA ° and v 
again is finite. In the holding period da, -Kp  again 
increases and K and v fall and the cycle repeats. During 
the tension ( + KA °) portion of each cycle a small amount 
of crack growth occurs before o decreases to zero. The 

* Crack closure prevents Kp from becoming positive in Mode I, but there 
is no such limitation in either mode II or mode II123. 
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Figure 9 (a) Local stress intensity factor K versus applied stress 
intensity factor for fatigue loading below KA T. (b) Square wave K A 
fatigue cycle, (c) corresponding Kp cycle, (d) corresponding K 
cycle, (e) corresponding crack growth velocity cycle in fatigue 

reversal of deformations t in the craze (or.zone) each cycle 
results in a transient increase in K on reloading and 
renewed non-steady state crack growth. 

e 

t In the craze the predominant mechanism of plastic deformation during 
the second cycle is different from that in the first. In the first the craze 
displacements are due to surface drawing; in the second restraightening 
of buckled fibrils provides most of the displacement. 
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GLOSSARY OF SYMBOLS 

A* activation area for crack growth 
a length of crack plus craze 
ao crack length 
ao atom spacing 
B _ KE~ r n K ~  

v c n - l K "  r 
c s speed of sound in the material 
D O craze fibril spacing 
/) craze fibril diameter 

~E/(1 - v 2) for plane strain 
E* effective Young's modulus-- Eforplanestress 

applied force 
attempt frequency of bond rupture 
strain energy release rate or crack extension force 
=kBT/A* 
critical strain energy release rate 
minimum crack extension force for crack growth 
local stress intensity factor at crack tip 
time rate of change of local stress intensity factor 
applied stress intensity factor 
time rate of change of applied stress intensity factor 
applied stress intensity factor for Dugdale 
model = Kv 

KA E extrapolation of the log KA vs. log v plot to v = v x 
KA ~ transient overshoot of K A necessary to start crack 

growth after holding at KA ° 
KAL, KA U lower and upper values of applied stress 

intensity factor during slip-stick crack growth 
KA ° applied stress intensity factor below KA T 
KA P applied stress intensity factor above KA T 
KAT, Kp r threshold applied stress intensity factor, and 

threshold plastic stress intensity factor, for stable 
steady state crack growth 

kB Boltzmann's constant 
d 

KE =E* 2 x ~ o  
K,, = d , , ~  
Kp plastic stress intensity factor 
Ky a r ~  
£P compliance calibration constant 
m power law exponent for craze fibril creep 
n power law exponent for craze displacement rate 
p = m - - n  
S c Dugdale zone tensile stress 
S, SM compliance of specimen and testing machine 

respectively 
widening rate of craze 

F 
f 
G 
GI 
GI, 
Go 
K 
[{ 

KA 

K~ 

POLYMER, 1984, Vol 25, November 1677 



Theory of crack growth in polymer glasses: E. J. Kramer and E. W. Hart 

T absolute temperature 
t s craze-fibril failure time 
t s, t t holding times at KA ° 
V* shear activation volume 
v crack velocity 
v T threshold crack velocity for stable steady state crack 

growth 
vc = 2gcDo/(m- 2) 
Vo =f/ao 
W specimen width along crack front 
w craze surface displacement 

craze surface displacement rate 
w, critical crack opening displacement 
~,y craze displacement rate when a = a y  
x coordinate measuring distance ahead of crack tip 
Xo distance in front of crack tip in fixed coordinate 

frame 
time rate of change of dislocation density 

~(x) linear dislocation density 
fl constant of order unity 
fl,, fl cos  - t (a o/a ) and cos - 1 (x/a)  respectively 
Aa craze length 
.AG* activation free energy for crack growth 
& specimen displacement rate 
~T threshold specimen displacement rate for stable 

steady state crack growth 
g local craze fibril creep strain rate 
g-t craze fibril failute time at dc 
q normalized stress, a/ar 
r/L upper limit to normalized stress = a(Do)/ay 
F surface energy with chain scission required 
y surface energy 
2 extension ratio of craze fibrils 
v Poisson's ratio 
a A stress ahead of the crack tip in absence of inelastic 

deformation 
ac a J2 
aL = a(Do) ,  stress at last intact fibril 
ao stress below which ~ = 0 
a P self stresses of plastic zone  (craze) 

P singular part of a P O'sing 
a x reference drawing (flow) stress 
a local true stress in craze 
dc local craze reference true stress 
dm minimum stress for craze fibril creep 
( a~  assumed constant value of stress over craze 
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